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Bias temperature instability (BTI) is one of the critical device degradation mechanisms in poly-Si/SiON
and metal gate/high-k complementary metal-oxide-semiconductor (CMOS) technologies. Using the
pre- and post-BTI flicker noise measurements, we investigated the bulk trap density, Nt, in both of these
technologies. The low-frequency noise spectra were predominantly of 1/fc type with c < 1 for NMOS and
�1 for PMOS. For SiON based technologies, the lower VTH degradation due to PBTI was noticed while con-
siderable VTH degradation was observed for NBTI in both SiON and MGHK technologies. Both MGHK and
SiON pFETs show a clear increase in the effective volume trap density, Nt, after NBTI. The increase in Nt in
MGHK n-MOSFETs during PBTI is markedly higher than that in MGHK p-MOSFETs during NBTI.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

In downscaled CMOS devices, the use of SiO2 as a gate dielectric
has reached physical limits due to the high leakage currents [1].
The high-k alternatives for SiO2 include HfO2 [2]. However,
reliability problems relating to the intrinsic material quality of
these dielectrics still exist [1,3–5]. Fluctuations in the channel
current are governed by carrier trapping and de-trapping within
a few nm from the Si interface [6–7]. As a result, the
low-frequency noise has been used as a diagnostic tool for under-
standing processes and mechanisms affecting device reliability.
The low-frequency noise also constitutes a critical technology
parameter [8–9]. It can be used to determine the effectiveness of
the gate stack when the sources of the current fluctuations are
charge trapping – de-trapping events [10–14]. The noise
investigations in the past have been focused on the effects of
various processing parameters such as the deposition technique,
HfO2 thickness, interfacial layer and type of metal gate on 1/f noise
[15–21]. Various fluctuation processes can be responsible for the
1/f noise in different materials and devices. For this reason, practi-
cal applications of new material systems usually require a thor-
ough investigation of the specific features of the low-frequency
noise in the material, and development of methods for its reduc-
tion [22–26].

The bias temperature instability (BTI) is one of the important
degradation mechanisms in the metal gate high-k and poly-Si/
SiON CMOS technologies and has been studied extensively in the
past [27–33]. The bias temperature dependent instability in tran-
sistors causes an increase in the threshold voltage of the MOSFET
when the device is stressed at higher voltage and high tempera-
ture. The threshold voltage shift consequently leads to a decrease
in the drain current, which results in the reduced lifetime [34–
36]. Flicker noise can be used to investigate newly generated traps
as a result of electrical stressing through BTI. In addition, it can be
used to investigate dielectric trap distribution and characteristics
by utilizing measurements both before and after this stressing.

In this work, we investigate the effect of the BTI stress on n- and
p-channel MOSFETs with [i] HfO2 gate oxide and TaN as gate mate-
rial (MGHK) as well as [ii] SiON dielectric layer with poly-Si gate
material (SiON) by using flicker (1/f) noise measurements. The
pre and post BTI effective dielectric volume trap density (Nt) is also
evaluated.
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Fig. 2. Low-frequency noise spectra at |VDS| = 0.05 V for both SiON and MGHK n-
MOSFETs. Shown are average values of SID (drain current noise spectral density for
multiple samples at different drain currents. The allometric fitting shown is done
for both SiON and MGHK p-MOSFETs at VTH condition (VG � VTH).

38 R. Samnakay et al. / Solid-State Electronics 135 (2017) 37–42
2. Experimental

The devices used for this study consisted of SiON and metal
gate/high-k (MGHK) n- and p-MOSFETs of nominal length with
area of 0.06–0.09 mm2. The ratio of the equivalent oxide thickness
(EOT) for MGHK to SiON devices was 0.56. The on-wafer noise
measurements were carried out in the linear regime at the con-
stant drain voltage |VDS| = 0.05 V and the constant drain current
values using BTA9812 noise analyzer system in conjunction with
NoisePro software from Proplus. Flicker noise on each tested device
was measured at three different values of the drain current, ID, cor-
responding to 10 mA, 100 mA and 170 mA. The charge-pumping
measurements were performed on comparable samples by mea-
suring the substrate current while simultaneously applying the
voltage pulses of fixed amplitude, rise time, fall time and frequency
to the gate.

The BTI stress was applied at a temperature of 125 �C for three
different constant voltage stress values: VG1, VG2, and VG3 (where
VG3 > VG2 > VG1) applied to n- and p-MOSFET samples. Four devices
under test (DUTs) were measured at each voltage condition. The
absolute shift in threshold voltage, DVTH, was determined at regu-
lar intervals, up to the stress time of about 1000 s. All post-stress
flicker noise measurements were carried out after a considerable
amount of recovery time spanning a number of days.
Fig. 3. Low-frequency noise spectra at |VDS| = 0.05 V for both SiON and MGHK p-
MOSFETs. Shown are average values of SID (drain current noise spectral density) for
3. Results and discussion

Fig. 1 shows the normalized ID-VG characteristics of MGHK and
SiON n- and p-MOSFETs. The tested SiON and MGHK n-MOSFETs
show a comparable drive current, ID. A similar observation is made
for SiON and MGHK p-MOSFETs. Fig. 2 shows the low-frequency
(LF) drain current noise spectra (SID) comparison of MGHK and
SiON n-MOSFETs while Fig. 3 presents the comparison for MGHK
and SiON p-MOSFETs. The data are the average values of the cur-
rent spectral density, SID, for multiple samples measured at three
different drain currents ID. Fitting is carried out at the VG � VTH

condition, which corresponds to the drain current ID = 10 mA. For
SiON and MGHK MOSFETs, the LF noise spectra follow 1/fc type
dependence, where p-MOSFETs have c � 1.04–1.09. It has been
established in prior studies that when c � 1, the traps are evenly
distributed through the tunneling distance and the energy band
gap [37,38]. The tested SiON and MGHK n-MOSFETs reveal
c � 0.83, which suggests that there is a larger number of higher
Fig. 1. Normalized drain current versus gate voltage characteristics with
VDS = 0.05 V for MGHK and SiON n- and p-MOSFETs.

multiple samples at different drain currents. The fitting is performed for both SiON
and MGHK p-MOSFETs at VTH condition (VG � VTH).
frequency traps, and the distribution of these traps are skewed clo-
ser to the dielectric interface [37,38]. Fig. 4 shows the average low-
frequency noise values for multiple samples at f = 25 versus the
drain current (ID) that they were measured at. This allows us to
see the transition from weak to moderate/strong inversion. Noise
levels were seen to be similar for SiON and MGHK n-MOSFETs at
every drain current ID. The same can be seen for SiON and MGHK
p-MOSFETs.

Assuming a trapping origin of 1/f noise, the effective volume
trap density, Nt, can be estimated from the input-referred noise
spectral density, SVG (SID/Gm

2 ), using the formula

SVFB ¼ q2kTNt

WLC2
invat f

; ð1Þ

where k is the Boltzmann constant, T is the absolute temperature, q
is the electron charge, Cinv is the inversion capacitance per unit area
given by Cinv = eox.eA/tinv, eox is the permittivity of SiO2, at is the tun-



Fig. 4. Drain current noise versus drain current characteristics for MGHK and SiON
n- and p-MOSFETs.
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Fig. 5. DVTH versus stress time at 125 �C for various stress voltages showing VTH

degradation in MGHK n- and p-MOSFETs. There is a clear correlation between
applied stress and DVTH for both PBTI and NBTI.
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neling parameter and f is the frequency [39–40]. The surface trap
density, Dt, was estimated as

Dt ¼ 4kTzNt ; ð2Þ
where z is the tunneling distance of the carrier from the Si/high-k
interface. It is evaluated at f = 25 Hz to be 1.49 nm for SiON and
2.08 nm for MGHK MOSFETs, respectively and was calculated using
the formula

1
2Pf

¼ so expðatzÞ: ð3Þ

The value of the tunneling parameter at was 1.2 � 108 cm�1 and
0.86 � 108 cm�1 for SiON and MGHK MOSFETs, respectively. The
calculated noise parameters are shown in Table 1 while the final
calculated values of Nt and Dt are indicated in Table 3. The charge
pumping measurements were performed on comparable samples
to estimate the interface state density, Nit, using the formula

Nit ¼ Icp=qfA; ð4Þ
where Icp is the charge pumping current, f is the test frequency, and
A is the channel area (in cm2 units) [41]. The calculated interface
state density, Nit, was found to be comparable to the previously cal-
culated pre-stress surface trap density values, Dt, that were
extracted from the flicker noise measurements, as shown in Table 3.

Fig. 5 presents the absolute threshold voltage shift for MGHK n-
and p-MOSFETs, respectively, at 125 �C under different stress con-
ditions. Both, negative bias temperature instability (NBTI) and pos-
itive bias temperature instability (PBTI), show a clear increase in
the absolute threshold voltage VTH. Table 2 shows the DVTH for
both MGHK and SiON MOSFETs under different stress conditions
from VG1 to VG3 where VG3 > VG2 > VG1. The VTH shift dependents
on both the applied stress magnitude and the stress time. The spot
values of DVTH at the stress time �1000 s along the fitted curves
Table 1
Noise parameters: values at VG � VTH, |Vds| = 0.05 V, Freq = 25 Hz.

SVG (V2/Hz) Z (nm) at (1/cm) Cinv (F/cm2)

N-MGHK 1.39 � 10�10 2.08 0.86 � 108 2.59 � 10�6

P-MGHK 1.18 � 10�10 2.08 0.86 � 108 2.55 � 10�6

N-SiON 9.99 � 10�11 1.49 1.2 � 108 1.56 � 10�6

P-SiON 2.38 � 10�10 1.49 1.2 � 108 1.44 � 10�6
show considerable DVTH shift for MGHK n- and p-MOSFETs. It
can be seen that PBTI DVTH is much higher at each applied stress
value, and it peaks at �100 mV at the applied stress voltage of
VG3. The NBTI DVTH peaks at �65 mV at the same applied stress
voltage.

Fig. 6 shows the absolute threshold voltage shift for SiON n- and
p-MOSFETs at 125 �C under different stress conditions and differ-
ent time intervals. Unlike the MGHK type devices where both n-
and p- type devices show clear threshold voltage shift, only SiON
p-MOSFETs under NBTI were observed to have significant DVTH

at three different applied stress conditions, reaching a peak of
�32 mV at stress time �1000 s and under an applied stress corre-
sponding to VG3. PBTI reveals lower DVTH degradation.

The flicker noise measurements for post-BTI devices can be
used to investigate newly generated traps [42]. Fig. 7 and Fig. 8
present the pre- and post-BTI low-frequency noise spectra for n-
and p-type MGHK and SiON MOSFETs for a given voltage VG1 after
1000 s stress respectively. In all cases, a slight increase in the
newly generated traps is observed post-stress except for the SiON
p-MOSFET where a larger increase observed, leading to the
increased drain current noise spectral density after the stress.
The effective volume trap density post-BTI at 25 Hz for devices
stressed to VG3 is calculated following the method described ear-
lier. It is compared to the Nt value determined pre-BTI. The pre-
and post-stress results are shown in Table 3.

From Table 3, one can see that the MGHK PBTI reveal a larger
increase in Nt than NBTI. The data indicate that MGHK n- and p-
MOSFETs have the increased density of interface traps as a result
of the electrical stressing. The latter explains the appearance of
the generation-recombination humps in the post-BTI spectra as
the capture and emission of carriers through these newly gener-
ated traps causes fluctuations in the number of free carriers. The
trapped charge can also cause fluctuations in the mobility, electric
field and barrier height.

A comparison of the extracted Nt post-BTI in SiON MOSFETs
(Table 3), calculated at f = 25 Hz, indicate that NBTI creates higher
density of interface traps compared to PBTI. The shiftDVTH for NBTI
in SiON MOSFETs is comparable to conventional MGHK devices.
However, SiON devices under PBTI show the lower threshold volt-
age shifts, close to the operation condition. The exception is the
high-voltage stress, close to the dielectric breakdown, at which
point the instability can be observed at shorter stress times [34].



Table 2
DVTH at 1000 s (milli-volts).

Applied VG (V) N-MOSFET P-MOSFET

MGHK SiON MGHK SiON

VG1 �10 �3 �8 �12
VG2 �40 �3 �30 �20
VG3 �100 �4 �65 �32
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Fig. 6. DVTH versus stress time at 125 �C for various stress voltages showing VTH

degradation on SiON n- and p-MOSFETs. PBTI for these devices is not seen to cause
any clear or significant DVTH. There is a clear correlation between applied stress and
DVTH for NBTI.

Fig. 7. Pre- and Post-BTI low-frequency noise spectra at |VDS| = 0.05 V for n- and p-
MGHK MOSFETs. Post-stress values shown are for VG3 after 1000 s.

Fig. 8. Pre- and Post-BTI low-frequency noise spectra at |VDS| = 0.05 V for n- and p-
MGHK MOSFETs. Post-stress values shown are for VG3 after 1000 s. Note the
enhanced SID change during BTI in p-MOSFETs as opposed to n-MOSFETs.

Table 3
Pre and post stress results.

P-MGHK N-MGHK P-SiON N-SiON

Pre-stress
Nt (1/cm3) 1.34 � 1018 8.17 � 1017 4.87 � 1017 2.80 � 1017

Dt (1/cm2) 2.93 � 1010 1.77 � 1010 7.59 � 109 4.37 � 109

Post-stress
Nt (1/cm3) 1.49 � 1018 1.80 � 1018 2.02 � 1018 9.93 � 1017

Dt (1/cm2) 3.25 � 1010 3.93 � 1010 3.14 � 1010 1.54 � 1010
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This effect can be attributed to the bulk defect generation in the
gate oxide.

The absolute threshold voltage DVTH of the MOSFET increases
while the device is biased in the inversion mode [34]. There are
distinct differences in the physical degradation mechanisms
between PBTI and NBTI due to the defect structure of the dielec-
trics, asymmetry in the band structures of the Si/high-k/metal gate
stack and the opposite polarity of the gate bias [34]. During NBTI in
p-MOSFETs, hole trapping and interface state generation have been
observed [36] with the physical degradation process involving hole
trapping in the dielectric layer and interface-state generation at
the interface for both MGHK and SiON MOSFETs. The basic degra-
dation mechanism for both MGHK and SiON MOSFETs is similar.
The positive charges can be trapped at interface and near-
interface states (border traps), as well as in the bulk of the oxide.
The trapped charges, which are very close to the inversion layer,
lead to degradation in the channel carrier mobility due to Coulomb
scattering effect. As a result of the mobility degradation, the peak
transconductance of both MGHK and SiON devices in the linear
regime decrease with increasing voltage shift. This would explain
why both MGHK and SiON p-MOSFETs show an increase in effec-
tive dielectric volume trap density Nt after NBTI.

On the other hand, during PBTI on n-MOSFETs, MGHK devices
show electron trapping in the high-k layer and/or the region
between the high-k layer and the interfacial oxide layer [43] while
electron trapping is seen to be small or negligible in SiON devices.
For this reason, we see an increase in Nt in MGHK n-MOSFETs dur-
ing PBTI that is markedly higher than the increase of Nt in SiON n-
MOSFETs. The degradation features vary for NBTI and PBTI due to
difference in the charge location [36]. The Coulomb scattering is
generally weaker since trapped charge is separated from the inver-
sion channel by the interfacial oxide layer [36]. This means that the
channel carrier mobility remains constant, independent of the
amount of trapped charge. For this reason, the transistor character-
istic is only horizontally shifted on the voltage scale.
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4. Conclusions

In this work, the flicker noise measurements were used as the
diagnostic tool for understanding MGHK and SiON MOSFETs in
terms of the correlation between bulk trapping density (Nt) and
BTI. The increase in Nt was seen in all cases after electrical stressing
with a larger increase seen with PBTI as compared to NBTI in
MGHK devices. A symmetric trap distribution was observed for
MGHK and SiON p-MOSFETs while the tested n-MOSFETs exhibited
an asymmetric trap distribution. An analysis of the threshold volt-
age shift DVTH of the different types of MOSFETs under BTI was
performed. Both n- and p- type devices show clear threshold volt-
age shift under BTI while only SiON p-MOSFETs under NBTI were
observed to have significant threshold voltage shift at applied
stress conditions. Finally, a comparison between the physical
degradation mechanisms in these MOSFETs was used to explain
calculated values of Nt.
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